Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2317783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588430

RESUMEN

GABAergic inhibitory interneurons, originating from the embryonic ventral forebrain territories, traverse a convoluted migratory path to reach the neocortex. These interneuron precursors undergo sequential phases of tangential and radial migration before settling into specific laminae during differentiation. Here, we show that the developmental trajectory of FoxG1 expression is dynamically controlled in these interneuron precursors at critical junctures of migration. By utilizing mouse genetic strategies, we elucidate the pivotal role of precise changes in FoxG1 expression levels during interneuron specification and migration. Our findings underscore the gene dosage-dependent function of FoxG1, aligning with clinical observations of FOXG1 haploinsufficiency and duplication in syndromic forms of autism spectrum disorders. In conclusion, our results reveal the finely tuned developmental clock governing cortical interneuron development, driven by temporal dynamics and the dose-dependent actions of FoxG1.


Asunto(s)
Corteza Cerebral , Neocórtex , Ratones , Animales , Corteza Cerebral/metabolismo , Movimiento Celular/fisiología , Neurogénesis/fisiología , Interneuronas/fisiología , Biomarcadores/metabolismo , Neuronas GABAérgicas/fisiología
2.
Mol Brain ; 15(1): 37, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484559

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) /p35 is involved in many developmental processes of the central nervous system. Cdk5/p35 is also implicated in synaptic plasticity, learning and memory. Several lines of conditional Cdk5 knockout mice (KO) have been generated and have shown different outcomes for learning and memory. Here, we present our analysis of p35 conditional KO mice (p35cKO) in hippocampal pyramidal neurons or forebrain GABAergic neurons using electrophysiological and behavioral methods. In the fear conditioning task, CamKII-p35cKO mice showed impaired memory retention. Furthermore, NMDAR-dependent long-term depression (LTD) induction by low-frequency stimuli in hippocampal slices from CamkII-p35cKO mice was impaired compared to that in control mice. In contrast, Dlx-p35cKO mice showed no abnormalities in behavioral tasks and electrophysiological analysis in their hippocampal slices. These results indicated that Cdk5/p35 in excitatory neurons is important for the hippocampal synaptic plasticity and associative memory retention.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Quinasa 5 Dependiente de la Ciclina , Proteínas del Tejido Nervioso/metabolismo , Animales , Neuronas GABAérgicas , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología
3.
Nat Commun ; 12(1): 3773, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145239

RESUMEN

Abnormalities in GABAergic inhibitory circuits have been implicated in the aetiology of autism spectrum disorder (ASD). ASD is caused by genetic and environmental factors. Several genes have been associated with syndromic forms of ASD, including FOXG1. However, when and how dysregulation of FOXG1 can result in defects in inhibitory circuit development and ASD-like social impairments is unclear. Here, we show that increased or decreased FoxG1 expression in both excitatory and inhibitory neurons results in ASD-related circuit and social behavior deficits in our mouse models. We observe that the second postnatal week is the critical period when regulation of FoxG1 expression is required to prevent subsequent ASD-like social impairments. Transplantation of GABAergic precursor cells prior to this critical period and reduction in GABAergic tone via Gad2 mutation ameliorates and exacerbates circuit functionality and social behavioral defects, respectively. Our results provide mechanistic insight into the developmental timing of inhibitory circuit formation underlying ASD-like phenotypes in mouse models.


Asunto(s)
Trastorno del Espectro Autista/genética , Encéfalo/crecimiento & desarrollo , Factores de Transcripción Forkhead/genética , Neuronas GABAérgicas/citología , Proteínas del Tejido Nervioso/genética , Conducta Social , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Neuronas GABAérgicas/trasplante , Glutamato Descarboxilasa/genética , Ratones
4.
Nat Commun ; 10(1): 3581, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395862

RESUMEN

The bimodal requisite for a genetic program and external stimuli is a key feature of sensory circuit formation. However, the contribution of cell-intrinsic codes to directing sensory-specific circuits remains unknown. Here, we identify the earliest molecular program that preselects projection neuron types in the sensory neocortex. Mechanistically, Foxg1 binds to an H3K4me1-enriched enhancer site to repress COUP-TFI, where ectopic acquisition of Foxg1 in layer 4 cells transforms local projection neurons to callosal projection neurons with pyramidal morphologies. Removal of Foxg1 in long-range projection neurons, in turn, derepresses COUP-TFI and activates a layer 4 neuron-specific program. The earliest segregation of projection subtypes is achieved through repression of Foxg1 in layer 4 precursors by early growth response genes, the major targets of the transforming growth factor-ß signaling pathway. These findings describe the earliest cortex-intrinsic program that restricts neuronal connectivity in sensory circuits, a fundamental step towards the acquisition of mammalian perceptual behavior.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neocórtex/fisiología , Red Nerviosa/fisiología , Neuronas/metabolismo , Percepción/fisiología , Animales , Factor de Transcripción COUP I/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Masculino , Ratones , Ratones Noqueados , Neocórtex/citología , Red Nerviosa/citología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
5.
Neurosci Res ; 138: 26-32, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30227162

RESUMEN

GABAergic interneurons in the neocortex play pivotal roles in the feedforward and feedback inhibition that control higher order information processing and thus, malfunction in the inhibitory circuits often leads to neurodevelopmental disorders. Very interestingly, a large diversity of morphology, synaptic targeting specificity, electrophysiological properties and molecular expression profiles are found in cortical interneurons, which originate within the distantly located embryonic ganglionic eminences. Here, I will review the still ongoing effort to understand the developmental trajectories of GABAergic cortical interneuron subtypes.


Asunto(s)
Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/fisiología , Neocórtex/crecimiento & desarrollo , Neurogénesis/fisiología , Animales
6.
PLoS One ; 13(5): e0198268, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847590

RESUMEN

Loss or gain of copy number of the gene encoding the transcription factor methyl-CpG-binding protein 2 (MeCP2) leads to neurodevelopmental disorders (Rett and MeCP2 duplication syndrome), indicating that precisely regulated MeCP2 expression during development is critical for mental health. Consistent with this idea, MeCP2 null mutants exhibit synaptic regression in the dorsal lateral geniculate nucleus (dLGN), the visual relay center in the thalamus, a phenotype resembling that of animals reared in the dark during the visual sensitive period. It remains unclear how MeCP2 expression is regulated during circuit formation and maturation, especially in excitatory and inhibitory populations of neurons. We found that, concomitant with the initiation of the dark-rearing sensitive period, MeCP2 protein levels were elevated in glutamatergic but not GABAergic neurons of the dLGN. Moreover, MeCP2 expression in glutamatergic populations was selectively reduced by dark-rearing. Therefore, we propose that visual experience-dependent MeCP2 induction in glutamatergic populations is essential for synaptic maturation within the dLGN.


Asunto(s)
Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/metabolismo , Tálamo/citología , Corteza Visual/citología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba , Corteza Visual/fisiología
7.
Development ; 145(1)2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29229772

RESUMEN

During forebrain development, a telencephalic organizer called the cortical hem is crucial for inducing hippocampal fate in adjacent cortical neuroepithelium. How the hem is restricted to its medial position is therefore a fundamental patterning issue. Here, we demonstrate that Foxg1-Lhx2 interactions are crucial for the formation of the hem. Loss of either gene causes a region of the cortical neuroepithelium to transform into hem. We show that FOXG1 regulates Lhx2 expression in the cortical primordium. In the absence of Foxg1, the presence of Lhx2 is sufficient to suppress hem fate, and hippocampal markers appear selectively in Lhx2-expressing regions. FOXG1 also restricts the temporal window in which loss of Lhx2 results in a transformation of cortical primordium into hem. Therefore, Foxg1 and Lhx2 form a genetic hierarchy in the spatiotemporal regulation of cortical hem specification and positioning, and together ensure the normal development of this hippocampal organizer.


Asunto(s)
Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica/fisiología , Hipocampo/embriología , Proteínas con Homeodominio LIM/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Telencéfalo/embriología , Factores de Transcripción/biosíntesis , Animales , Factores de Transcripción Forkhead/genética , Proteínas con Homeodominio LIM/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética
8.
J Neurosci ; 35(37): 12869-89, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377473

RESUMEN

Neurogliaform (RELN+) and bipolar (VIP+) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been elucidated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP). Interestingly, Prox1 promotes the maturation of CGE-derived interneuron subtypes through intrinsic differentiation programs that operate in tandem with extrinsically driven neuronal activity-dependent pathways. Thus Prox1 represents the first identified transcription factor specifically required for the embryonic and postnatal acquisition of CGE-derived cortical interneuron properties. SIGNIFICANCE STATEMENT: Despite the recognition that 30% of GABAergic cortical interneurons originate from the caudal ganglionic eminence (CGE), to date, a specific transcriptional program that selectively regulates the development of these populations has not yet been identified. Moreover, while CGE-derived interneurons display unique patterns of tangential and radial migration and preferentially populate the superficial layers of the cortex, identification of a molecular program that controls these events is lacking.Here, we demonstrate that the homeodomain transcription factor Prox1 is expressed in postmitotic CGE-derived cortical interneuron precursors and is maintained into adulthood. We found that Prox1 function is differentially required during both embryonic and postnatal stages of development to direct the migration, differentiation, circuit integration, and maintenance programs within distinct subtypes of CGE-derived interneurons.


Asunto(s)
Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Interneuronas/citología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Biomarcadores , Calbindina 2/análisis , Moléculas de Adhesión Celular Neuronal/análisis , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Proteínas de la Matriz Extracelular/análisis , Neuronas GABAérgicas/metabolismo , Perfilación de la Expresión Génica , Interneuronas/clasificación , Interneuronas/metabolismo , Ratones , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteína Reelina , Serina Endopeptidasas/análisis , Proteínas Supresoras de Tumor/deficiencia , Péptido Intestinal Vasoactivo/análisis
9.
J Neurosci ; 34(17): 5788-99, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760839

RESUMEN

The olfactory bulb (OB) is one of the two major loci in the mammalian brain where newborn neurons are constantly integrated into the neural circuit during postnatal life. Newborn neurons are generated from neural stem cells in the subventricular zone (SVZ) of the lateral ventricle and migrate to the OB through the rostral migratory stream. The majority of these newborn neurons differentiate into inhibitory interneurons, such as granule cells and periglomerular cells. It has been reported that prolonged supply of newborn neurons leads to continuous addition/turnover of the interneuronal populations and contributes to functional integrity of the OB circuit. However, it is not still clear how and to what extent postnatal-born neurons contribute to OB neural circuit formation, and the functional role of postnatal neurogenesis in odor-related behaviors remains elusive. To address this question, here by using genetic strategies, we first determined the unique integration mode of newly born interneurons during postnatal development of the mouse OB. We then manipulated these interneuron populations and found that continuous postnatal neurogenesis in the SVZ-OB plays pivotal roles in flexible olfactory associative learning and memory.


Asunto(s)
Aprendizaje por Asociación/fisiología , Red Nerviosa/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Animales , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/fisiología , Giro Dentado/citología , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas/citología , Odorantes , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo
10.
Neuron ; 74(6): 1045-58, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22726835

RESUMEN

Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.


Asunto(s)
Movimiento Celular/fisiología , Corteza Cerebral/citología , Factores de Transcripción Forkhead/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/citología , Animales , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Piramidales/metabolismo
11.
J Neurosci ; 32(19): 6688-98, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22573691

RESUMEN

During early postnatal development, neuronal networks successively produce various forms of spontaneous patterned activity that provide key signals for circuit maturation. Initially, in both rodent hippocampus and neocortex, coordinated activity emerges in the form of synchronous plateau assemblies (SPAs) that are initiated by sparse groups of gap-junction-coupled oscillating neurons. Subsequently, SPAs are replaced by synapse-driven giant depolarizing potentials (GDPs). Whether these sequential changes in mechanistically distinct network activities correlate with modifications in single-cell properties is unknown. To determine this, we studied the morphophysiological fate of single SPA cells as a function of development. We focused on CA3 GABAergic interneurons, which are centrally involved in generating GDPs in the hippocampus. As the network matures, GABAergic neurons are engaged more in GDPs and less in SPAs. Using inducible genetic fate mapping, we show that the individual involvement of GABAergic neurons in SPAs is correlated to their temporal origin. In addition, we demonstrate that the SPA-to-GDP transition is paralleled by a remarkable maturation in the morphophysiological properties of GABAergic neurons. Compared with those involved in GDPs, interneurons participating in SPAs possess immature intrinsic properties, receive synaptic inputs spanning a wide amplitude range, and display large somata as well as membrane protrusions. Thus, a developmental switch in the morphophysiological properties of GABAergic interneurons as they progress from SPAs to GDPs marks the emergence of synapse-driven network oscillations.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Interneuronas/citología , Interneuronas/fisiología , Red Nerviosa/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Femenino , Técnicas de Sustitución del Gen , Hipocampo/citología , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Técnicas de Cultivo de Órganos
12.
Neurosci Res ; 73(1): 85-91, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22343123

RESUMEN

Reporters of Cre and/or Flp activity are important for defining the spatial and temporal extent of Cre/Flp-mediated recombination. Here, we describe R26-CAG-LF-mTFP1, a multifunctional fluorescent reporter mouse that strongly expresses mTFP1 (bright teal fluorescent protein) after Cre- and Flp-mediated recombination. To meet the need for single recombinase-mediated reporter expression, we generated derivatives of R26-CAG-LF-mTFP1. The germline excision of the Frt-flanked stop cassette in R26-CAG-LF-mTFP1 generated a Cre-dependent reporter (R26-CAG-LoxP-mTFP1). Similarly, R26-CAG-FRT-mTFP1, in which the loxP-flanked stop cassette was excised in the germline, requires only Flp to activate mTFP1 expression.


Asunto(s)
ADN Nucleotidiltransferasas/fisiología , Genes Reporteros/fisiología , Proteínas Fluorescentes Verdes/fisiología , Integrasas/fisiología , Proteínas/fisiología , Recombinación Genética/fisiología , Animales , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN no Traducido
13.
Neuron ; 71(6): 995-1013, 2011 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-21943598

RESUMEN

A key obstacle to understanding neural circuits in the cerebral cortex is that of unraveling the diversity of GABAergic interneurons. This diversity poses general questions for neural circuit analysis: how are these interneuron cell types generated and assembled into stereotyped local circuits and how do they differentially contribute to circuit operations that underlie cortical functions ranging from perception to cognition? Using genetic engineering in mice, we have generated and characterized approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons. More select populations are captured by intersection of Cre and Flp drivers. Genetic targeting allows reliable identification, monitoring, and manipulation of cortical GABAergic neurons, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior. As such, this approach will accelerate the study of GABAergic circuits throughout the mammalian brain.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Integrasas/metabolismo , Neuronas/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Genes Reporteros , Interneuronas/citología , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Neuronas/citología , Células Madre/fisiología
14.
Cereb Cortex ; 21(4): 845-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20732898

RESUMEN

It is of considerable interest to determine how diverse subtypes of γ-aminobutyric acidergic (GABAergic) interneurons integrate into the functional network of the cerebral cortex. Using inducible in vivo genetic fate mapping approaches, we found that interneuron precursors arising from the medial ganglionic eminence (MGE) and caudal ganglionic eminence (CGE) at E12.5, respectively, populate deep and superficial cortical layers in a complementary manner in the mature cortex. These age-matched populations initiate tangential migration into the cortex simultaneously, migrate above and below the cortical plate in a similar ratio, and complete their entrance into the cortical plate by P1. Surprisingly, while these 2 interneuron populations show a comparable layer distribution at P1, they subsequently segregate into distinct cortical layers. In addition, the initiation of the radial sorting within each lineage coincided well with the upregulation of the potassium/chloride cotransporter KCC2. Moreover, layer sorting of a later born (E16.5) CGE-derived population occurred with a similar time course to the earlier born E12.5 cohorts, further suggesting that this segregation step is controlled in a subtype specific manner. We conclude that radial sorting within the early postnatal cortex is a key mechanism by which the layer-specific integration of GABAergic interneurons into the emerging cortical network is achieved.


Asunto(s)
Linaje de la Célula , Movimiento Celular/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Interneuronas/citología , Neurogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
15.
Nat Neurosci ; 13(11): 1373-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935641

RESUMEN

The refinement of neural circuits during development depends on a dynamic process of branching of axons and dendrites that leads to synapse formation and connectivity. The neurotrophin brain-derived neurotrophic factor (BDNF) is essential for the outgrowth and activity-dependent remodeling of axonal arbors in vivo. However, the mechanisms that translate extracellular signals into the formation of axonal branches are incompletely understood. We found that MAP kinase phosphatase-1 (MKP-1) controls axon branching. MKP-1 expression induced by BDNF signaling caused spatiotemporal deactivation of c-jun N-terminal kinase (JNK), which reduced the phosphorylation of JNK substrates that destabilize microtubules. Indeed, neurons from mkp-1 null mice could not produce axon branches in response to BDNF. Our results identify a signaling mechanism that regulates axonal branching and provide a framework for studying the molecular mechanisms of innervation and axonal remodeling under normal and pathological conditions.


Asunto(s)
Axones/efectos de los fármacos , Axones/enzimología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Fosfatasa 1 de Especificidad Dual/metabolismo , Neuronas/citología , Animales , Células Cultivadas , Corteza Cerebral/citología , Fosfatasa 1 de Especificidad Dual/genética , Electroporación/métodos , Embrión de Mamíferos , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Transgénicos , Microtúbulos/genética , Microtúbulos/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Transfección/métodos
16.
J Neurosci ; 30(5): 1582-94, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130169

RESUMEN

By combining an inducible genetic fate mapping strategy with electrophysiological analysis, we have systematically characterized the populations of cortical GABAergic interneurons that originate from the caudal ganglionic eminence (CGE). Interestingly, compared with medial ganglionic eminence (MGE)-derived cortical interneuron populations, the initiation [embryonic day 12.5 (E12.5)] and peak production (E16.5) of interneurons from this embryonic structure occurs 3 d later in development. Moreover, unlike either pyramidal cells or MGE-derived cortical interneurons, CGE-derived interneurons do not integrate into the cortex in an inside-out manner but preferentially (75%) occupy superficial cortical layers independent of birthdate. In contrast to previous estimates, CGE-derived interneurons are both considerably greater in number (approximately 30% of all cortical interneurons) and diversity (comprised by at least nine distinct subtypes). Furthermore, we found that a large proportion of CGE-derived interneurons, including the neurogliaform subtype, express the glycoprotein Reelin. In fact, most CGE-derived cortical interneurons express either Reelin or vasoactive intestinal polypeptide. Thus, in conjunction with previous studies, we have now determined the spatial and temporal origins of the vast majority of cortical interneuron subtypes.


Asunto(s)
Linaje de la Célula/genética , Corteza Cerebral/citología , Técnicas Genéticas , Interneuronas/citología , Animales , Tipificación del Cuerpo/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/genética , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Marcadores Genéticos , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Prosencéfalo/citología , Prosencéfalo/fisiología , Proteína Reelina , Serina Endopeptidasas/metabolismo
17.
J Neurosci ; 30(6): 2165-76, 2010 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-20147544

RESUMEN

GABAergic interneurons critically regulate cortical computation through exquisite spatiotemporal control over excitatory networks. Precision of this inhibitory control requires a remarkable diversity within interneuron populations that is largely specified during embryogenesis. Although interneurons expressing the neuronal isoform of nitric oxide synthase (nNOS) constitute the largest hippocampal interneuron cohort their origin and specification remain unknown. Thus, as neurogliaform cells (NGC) and Ivy cells (IvC) represent the main nNOS(+) interneurons, we investigated their developmental origins. Although considered distinct interneuron subtypes, NGCs and IvCs exhibited similar neurochemical and electrophysiological signatures, including NPY expression and late spiking. Moreover, lineage analyses, including loss-of-function experiments and inducible fate-mapping, indicated that nNOS(+) IvCs and NGCs are both derived from medial ganglionic eminence (MGE) progenitors under control of the transcription factor Nkx2-1. Surprisingly, a subset of NGCs lacking nNOS arises from caudal ganglionic eminence (CGE) progenitors. Thus, while nNOS(+) NGCs and IvCs arise from MGE progenitors, a CGE origin distinguishes a discrete population of nNOS(-) NGCs.


Asunto(s)
Hipocampo/citología , Interneuronas/citología , Interneuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Potenciales de Acción , Animales , Linaje de la Célula , Polaridad Celular , Hipocampo/enzimología , Inmunohistoquímica , Interneuronas/enzimología , Masculino , Ratones , Ratones Transgénicos , Neuropéptido Y/biosíntesis , Proteínas Nucleares/fisiología , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/citología , Células Madre/fisiología , Telencéfalo/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/fisiología , Péptido Intestinal Vasoactivo/biosíntesis
18.
J Neurosci ; 29(50): 15933-46, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-20016109

RESUMEN

In the developing mammalian basal telencephalon, neural progenitors from the subpallium generate the majority of inhibitory medium spiny neurons (MSNs) in the striatum, while both pallial- and subpallial-derived progenitors contribute to excitatory and inhibitory neuronal diversity in the amygdala. Using a combination of approaches, including genetic fate mapping, cell birth dating, cell migration assays, and electrophysiology, we find that cells derived from the Emx1 lineage contribute to two distinct neuronal populations in the mature basal forebrain: inhibitory MSNs in the striatum and functionally distinct subclasses of excitatory neurons in the amygdala. Our cell birth-dating studies reveal that these two populations are born at different times during early neurogenesis, with the amygdala population born before the MSNs. In the striatum, Emx1-lineage neurons represent a unique subpopulation of MSNs: they are disproportionately localized to the dorsal striatum, are found in dopamine receiving, reelin-positive patches, and are born throughout striatal neurogenesis. In addition, our data suggest that a subpopulation of these Emx1-lineage cells originate in the pallium and subsequently migrate to the developing striatum and amygdala. Our intersectional fate-mapping analysis further reveals that Emx1-lineage cells that coexpress Dlx exclusively generate MSNs but do not contribute to the excitatory neurons in the amygdala. Thus, both the timing of neurogenesis and differential combinatorial gene expression appear to be key determinants of striatal versus amygdala fate decisions of Emx1-lineage cells.


Asunto(s)
Amígdala del Cerebelo/fisiología , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Cuerpo Estriado/fisiología , Proteínas de Homeodominio/fisiología , Células Madre/fisiología , Factores de Transcripción/fisiología , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/embriología , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cuerpo Estriado/citología , Cuerpo Estriado/embriología , Femenino , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Neurogénesis/genética , Neurogénesis/fisiología , Neuronas/clasificación , Neuronas/citología , Neuronas/fisiología , Embarazo , Proteína Reelina , Células Madre/clasificación , Células Madre/citología , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
19.
Cereb Cortex ; 19 Suppl 1: i1-10, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19363146

RESUMEN

Ventral telencephalic progenitors expressing the homeodomain transcription factor Nkx6-2 have been shown to give rise to a multitude of cortical interneuron subtypes usually associated with origin in either the medial ganglionic eminence or the caudal ganglionic eminence. The function of Nkx6-2 in directing the fate of those progenitors has, however, not been thoroughly analyzed. We used a combination of genetic inducible fate mapping and in vivo loss-of-function to analyze the requirement of Nkx6-2 in determining the fate of cortical interneurons. We have found that interneuron subtypes are born with a characteristic temporal pattern. Furthermore, we extend the characterization of interneurons from the Nkx6-2 lineage through the application of electrophysiological methods. Analysis of these populations in Nkx6-2 null mice suggests that there is a small and partially penetrant loss of delayed non-fast spiking somatostatin/calretinin double positive cortical interneurons in the absence of Nkx6-2 gene function.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Interneuronas/fisiología , Neocórtex/citología , Neocórtex/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Animales , Ratones , Ratones Noqueados , Distribución Tisular
20.
Neuron ; 59(5): 722-32, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18786356

RESUMEN

Previous work has demonstrated that the character of mouse cortical interneuron subtypes can be directly related to their embryonic temporal and spatial origins. The relationship between embryonic origin and the character of mature interneurons is likely reflected by the developmental expression of genes that direct cell fate. However, a thorough understanding of the early genetic events that specify subtype identity has been hampered by the perinatal lethality resulting from the loss of genes implicated in the determination of cortical interneurons. Here, we employ a conditional loss-of-function approach to demonstrate that the transcription factor Nkx2-1 is required for the proper specification of specific interneuron subtypes. Removal of this gene at distinct neurogenic time points results in a switch in the subtypes of neurons observed at more mature ages. Our strategy reveals a causal link between the embryonic genetic specification by Nkx2-1 in progenitors and the functional attributes of their neuronal progeny in the mature nervous system.


Asunto(s)
Tipificación del Cuerpo/fisiología , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Interneuronas/clasificación , Interneuronas/fisiología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Factores de Edad , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Tipificación del Cuerpo/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Electroencefalografía , Embrión de Mamíferos , Antagonistas de Estrógenos/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Interneuronas/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Convulsiones/genética , Convulsiones/fisiopatología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Tamoxifeno/farmacología , Factor Nuclear Tiroideo 1 , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...